- Preprints and In Print:
[44] Assimos, Renan; Savas-Halilaj, Andreas; Smoczyk, Knut
Mean curvature flow of area decreasing maps in codimension two.
arXiv: 2201.05523 (2022). - Published (Zentralblatt):
[43] Smoczyk, Knut
Self-expanders of the mean curvature flow.
Vietnam Journal of Mathematics 49, 433--445 (2021)
arXiv: 2005.05803 (2020).
[42] Smoczyk, Knut; Tsui, Mao-Pei; Wang, Mu-Tao
Generalized Lagrangian mean curvature flows: the cotangent bundle case.
J. Reine Angew. Math. (Crelle), 750, 97--121 (2019)
arXiv: 1604.02936 (2016).
[41] Savas-Halilaj, Andreas; Smoczyk, Knut
Lagrangian mean curvature flow of Whitney spheres.
Geometry & Topology 23:2, 1057--1084 (2019)
arXiv: 1802.06304v1 (2018).
[40] Martin, Francisco; Perez-Garcia, Jesus; Savas-Halilaj, Andreas; Smoczyk, Knut
A characterization of the grim reaper cylinder.
J. Reine Angew. Math. (Crelle), 746, 209--234 (2019)
arXiv: 1508.01539v2 (2015).
[39] Smoczyk, Knut
Local non-collapsing of volume for the Lagrangian mean curvature flow.
Calc. Var. Partial Differential Equations 58, no.1, 58:20 (2019)
arXiv: 1801.07303v1 (2018).
[38] Savas-Halilaj, Andreas; Smoczyk, Knut
Mean curvature flow of area decreasing maps between Riemann surfaces.
Annals of Global Analysis and Geometry, 53, No. 1, 11--37 (2018)
arXiv:1602.07595 (2016).
[37] Smoczyk, Knut; Tsui, Mao-Pei; Wang, Mu-Tao
Curvature decay estimates for mean curvature flow in higher codimensions.
Transaction of the AMS, 368, No.11, 7763--7775 (2016)
arXiv:1401.4154 (2014).
[36] Martin, Francisco; Savas-Halilaj, Andreas; Smoczyk, Knut
On the topology of translating solitons of the mean curvature flow.
Calc. Var. Partial Differ. Equ. 54, No. 3, 2853-2882 (2015)
arXiv:1404.6703 (2014).
[35] Savas-Halilaj, Andreas; Smoczyk, Knut
Evolution of contractions by mean curvature flow.
Math. Ann. 361, No. 3-4, 725-740 (2015)
arXiv:1312.0783 (2013).
[34] Savas-Halilaj, Andreas; Smoczyk, Knut
Bernstein theorems for length and area decreasing minimal maps.
Calc. Var. Partial Differ. Equ. 50, No. 3-4, 549-577 (2014)
arXiv: 1205.2379 (2012) (Former title: The strong elliptic maximum principle for vector bundles and applications to minimal maps).
[33] Savas-Halilaj, Andreas; Smoczyk, Knut
Homotopy of area decreasing maps by mean curvature flow.
Adv. Math. 255, 455-473 (2014)
arXiv:1302.0748 (2013).
[32] Smoczyk, Knut
Evolution of spacelike surfaces in AdS3 by their Lagrangian angle.
Math. Ann. 355, No. 4, 1443-1468 (2013)
arXiv:1107.1836 (2011).
[31] Smoczyk, Knut
Mean curvature flow in higher codimension: introduction and survey.
In: Bär, Christian (ed.) et al., Global differential geometry. Berlin: Springer (ISBN 978-3-642-22841-4/hbk; 978-3-642-22842-1/ebook). Springer Proceedings in Mathematics 17, 231-274 (2012)
arXiv:1104.3222 (2011).
[30] Smoczyk, Knut
On algebraic selfsimilar solutions of the mean curvature flow.
Analysis, München 31, No. 1, 91-102 (2011)
[29] Smoczyk, Knut; Wang, Mu-Tao
Generalized Lagrangian mean curvature flows in symplectic manifolds.
Asian J. Math. 15, No. 1, 129-140 (2011)
arXiv:0910.2667 (2009).
[28] Ebeling, Wolfgang (ed.); Hulek, Klaus (ed.); Smoczyk, Knut (ed.)
Complex and differential geometry.
Conference held at Leibniz Universität Hannover, Germany, September 14–18, 2009. Proceedings.
Springer Proceedings in Mathematics 8. Berlin: Springer (ISBN 978-3-642-20299-5/hbk; 978-3-642-20300-8/ebook). ix, 420 p
[27] Chursin, Mykhaylo; Schäfer, Lars; Smoczyk, Knut
Mean curvature flow of space-like Lagrangian submanifolds in almost para-Kähler manifolds.
Calc. Var. Partial Differ. Equ. 41, No. 1-2, 111-125 (2011)
[26] Smoczyk, Knut
Curve shortening on Sasaki manifolds and the Weinstein conjecture.
East-West J. Math., Spec. Vol., 292-305 (2010)
[25] Smoczyk, Knut; Wang, Guofang; Zhang, Yongbing
The Sasaki-Ricci flow.
Int. J. Math. 21, No. 7, 951-969 (2010)
[24] Schäfer, Lars; Smoczyk, Knut
Decomposition and minimality of Lagrangian submanifolds in nearly Kähler manifolds.
Ann. Global Anal. Geom. 37, No. 3, 221-240 (2010)
arXiv:0904.3683 (2009).
[23] Lefloch, Philippe G.; Smoczyk, Knut
The hyperbolic mean curvature flow.
J. Math. Pures Appl. (9) 90, No. 6, 591-614 (2008)
arXiv:0712.0091 (2007).
[22] Groh, K.; Schwarz, M.; Smoczyk, K.; Zehmisch, K.
Mean curvature flow of monotone Lagrangian submanifolds.
Math. Z. 257, No. 2, 295-327 (2007)
arXiv:math/0606428 (2006).
[21] Smoczyk, Knut; Wang, Guofang; Xin, Y.L.
Bernstein type theorems with flat normal bundle.
Calc. Var. Partial Differ. Equ. 26, No. 1, 57-67 (2006)
[20] Smoczyk, Knut
A representation formula for the inverse harmonic mean curvature flow.
Elem. Math. 60, No. 2, 57-65 (2005)
[19] Smoczyk, Knut
Self-shrinkers of the mean curvature flow in arbitrary codimension.
Int. Math. Res. Not. 2005, No. 48, 2983-3004 (2005)
arXiv:math/0507325 (2005).
[18] Smoczyk, Knut
Longtime existence of the Lagrangian mean curvature flow.
Calc. Var. Partial Differ. Equ. 20, No. 1, 25-46 (2004)
[17] Schnürer, Oliver C.; Smoczyk, Knut
Neumann and second boundary value problems for Hessian and Gauß curvature flows.
Ann. Inst. Henri Poincaré, Anal. Non Linéaire 20, No.6, 1043-1073 (2003)
[16] Smoczyk, Knut
Closed Legendre geodesics in Sasaki manifolds.
New York J. Math. 9, 23-47, electronic only (2003)
[15] Smoczyk, Knut; Wang, Mu-Tao
Mean curvature flows of Lagrangian submanifolds with convex potentials.
J. Differ. Geom. 62, No. 2, 243-257 (2002)
arXiv:math/0209349 (2002).
[14] Smoczyk, Knut
Angle theorems for the Lagrangian mean curvature flow.
Math. Z. 240, No.4, 849-883 (2002)
[13] Smoczyk, K.
Prescribing the Maslov form of Lagrangian immersions.
Geom. Dedicata 91, 59-69 (2002)
[12] Schnürer, Oliver C.; Smoczyk, Knut
Evolution of hypersurfaces in central force fields.
J. Reine Angew. Math. (Crelle) 550, 77-95 (2002)
[11] Smoczyk, Knut
Note on the spectrum of the Hodge-Laplacian for k-forms on minimal Legendre submanifolds in S2n+1.
Calc. Var. Partial Differ. Equ. 14, No.1, 107-113 (2002)
[10] Smoczyk, Knut
A relation between mean curvature flow solitons and minimal submanifolds.
Math. Nachr. 229, 175-186 (2001)
[09] Hungerbühler, N.; Smoczyk, K.
Soliton solutions for the mean curvature flow.
Differ. Integral Equ. 13, No.10-12, 1321-1345 (2000)
[08] Smoczyk, Knut
Remarks on the inverse mean curvature flow.
Asian J. Math. 4, No.2, 331-335 (2000)
[07] Smoczyk, Knut
The Lagrangian mean curvature flow.
(Der Lagrangesche mittlere Krümmungsfluss.)
Universität Leipzig (Habilitation), 102 Seiten (2000).
[06] Smoczyk, Knut
Nonexistence of minimal Lagrangian spheres in hyperKähler manifolds.
Calc. Var. Partial Differ. Equ. 10, No.1, 41-48 (2000)
[05] Smoczyk, Knut
Harnack inequality for the Lagrangian mean curvature flow.
Calc. Var. Partial Differ. Equ. 8, No.3, 247-258 (1999)
[04] Smoczyk, Knut
Starshaped hypersurfaces and the mean curvature flow.
Manuscr. Math. 95, No.2, 225-236 (1998)
[03] Smoczyk, Knut
Harnack inequalities for curvature flows depending on mean curvature.
New York J. Math. 3, 103-118, electronic only (1997)
[02] Smoczyk, Knut
Symmetric hypersurfaces in Riemannian manifolds contracting to Lie groups by their mean curvature.
Calc. Var. Partial Differ. Equ. 4, No.2, 155-170 (1996)
[01] Smoczyk, Knut
The symmetric ‘doughnut’ evolving by its mean curvature.
Hokkaido Math. J. 23, No.3, 523-547 (1994) - Unpublished:
[x] Smoczyk, Knut
A canonical way to deform a Lagrangian submanifold.
This paper was the foundation of the Lagrangian mean curvature flow but was published only on arXiv.
arXiv:dg-ga/9605005 (1996).
A list of my publications can be found under my ORCID iD:
https://orcid.org/0000-0001-6331-9893